The zebrafish has emerged as an important vertebrate model for cardiovascular disease study. Zebrafish larvae are transparent, allowing visualization of the heart and vasculature for high-throughput phenotypic assays. In particular, the formation of the heart chambers, cardiac contraction, vessels, and blood flow are easily observed in vivo. Besides, during the first days of development, zebrafish embryos are not fully dependent on a functional cardiovascular system, since they get sufficient oxygen by passive diffusion. Thus, embryos with severe cardiovascular defects survive throughout embryogenesis facilitating the phenotypic analysis of mutations that in mammals could cause early embryonic lethality. As a result, severe phenotypes concerning cardiac valve development could be studied even in the absence of blood circulation, resulting in the notion that intracardiac flow dynamics affect the morphogenesis of valve development. Moreover, the zebrafish embryonic heart rate is beats per minute, much closer to the human heart rate than the mouse.
Besides, the efforts that had been made out of the combination of population-based genome-wide association studies (GWAS) and functional analysis in zebrafish models reveal uncharacterized mechanisms that give the knowledge to design new prognostic and therapeutic strategies.
Top comments (0)